Search results for "Cut and conjugate loci"
showing 3 items of 3 documents
Geodesic flow of the averaged controlled Kepler equation
2008
A normal form of the Riemannian metric arising when averaging the coplanar controlled Kepler equation is given. This metric is parameterized by two scalar invariants which encode its main properties. The restriction of the metric to $\SS^2$ is shown to be conformal to the flat metric on an oblate ellipsoid of revolution, and the associated conjugate locus is observed to be a deformation of the standard astroid. Though not complete because of a singularity in the space of ellipses, the metric has convexity properties that are expressed in terms of the aforementioned invariants, and related to surjectivity of the exponential mapping. Optimality properties of geodesics of the averaged controll…
Geometric optimal control : homotopic methods and applications
2012
This work is about geometric optimal control applied to celestial and quantum mechanics. We first dealt with the minimum fuel consumption problem of transfering a satellite around the Earth. This brought to the creation of the code HamPath which permits first of all to solve optimal control problem for which the command law is smooth. It is based on the Pontryagin Maximum Principle (PMP) and on the notion of conjugate point. This program combines shooting method, differential homotopic methods and tools to compute second order optimality conditions. Then we are interested in quantum control. We study first a system which consists in two different particles of spin 1/2 having two different r…
On some Riemannian aspects of two and three-body controlled problems
2009
The flow of the Kepler problem (motion of two mutually attracting bodies) is known to be geodesic after the work of Moser [20], extended by Belbruno and Osipov [2, 21]: Trajectories are reparameterizations of minimum length curves for some Riemannian metric. This is not true anymore in the case of the three-body problem, and there are topological obstructions as observed by McCord et al. [19]. The controlled formulations of these two problems are considered so as to model the motion of a spacecraft within the influence of one or two planets. The averaged flow of the (energy minimum) controlled Kepler problem with two controls is shown to remain geodesic. The same holds true in the case of o…